A weighted combination of pseudo-likelihood estimators for longitudinal binary data subject to non-ignorable non-monotone missingness.
نویسندگان
چکیده
For longitudinal binary data with non-monotone non-ignorably missing outcomes over time, a full likelihood approach is complicated algebraically, and with many follow-up times, maximum likelihood estimation can be computationally prohibitive. As alternatives, two pseudo-likelihood approaches have been proposed that use minimal parametric assumptions. One formulation requires specification of the marginal distributions of the outcome and missing data mechanism at each time point, but uses an 'independence working assumption,' i.e. an assumption that observations are independent over time. Another method avoids having to estimate the missing data mechanism by formulating a 'protective estimator.' In simulations, these two estimators can be very inefficient, both for estimating time trends in the first case and for estimating both time-varying and time-stationary effects in the second. In this paper, we propose the use of the optimal weighted combination of these two estimators, and in simulations we show that the optimal weighted combination can be much more efficient than either estimator alone. Finally, the proposed method is used to analyze data from two longitudinal clinical trials of HIV-infected patients.
منابع مشابه
Pseudo-likelihood Methods for the Analysis of Longitudinal Binary Data Subject to Nonignorable Non-monotone Missingness
For longitudinal binary data with non-monotone non-ignorable missing outcomes over time, a full likelihood approach is complicated algebraically, and maximum likelihood estimation can be computationally prohibitive with many times of follow-up. We propose pseudo-likelihoods to estimate the covariate effects on the marginal probabilities of the outcomes, in addition to the association parameters...
متن کاملA transition model for quality-of-life data with non-ignorable non-monotone missing data.
In this paper, we consider a full likelihood method to analyze continuous longitudinal responses with non-ignorable non-monotone missing data. We consider a transition probability model for the missingness mechanism. A first-order Markov dependence structure is assumed for both the missingness mechanism and observed data. This process fits the natural data structure in the longitudinal framewor...
متن کاملAnalysis of non-ignorable missing and left-censored longitudinal data using a weighted random effects tobit model.
In a longitudinal study with response data collected during a hospital stay, observations may be missing because of the subject's discharge from the hospital prior to completion of the study or the death of the subject, resulting in non-ignorable missing data. In addition to non-ignorable missingness, there is left-censoring in the response measurements because of the inherent limit of detectio...
متن کاملSemiparametric approach for non-monotone missing covariates in a parametric regression model.
Missing covariate data often arise in biomedical studies, and analysis of such data that ignores subjects with incomplete information may lead to inefficient and possibly biased estimates. A great deal of attention has been paid to handling a single missing covariate or a monotone pattern of missing data when the missingness mechanism is missing at random. In this article, we propose a semipara...
متن کاملPseudo-likelihood Estimation for Incomplete Data
In statistical practice, incomplete measurement sequences are the rule rather than the exception. Fortunately, in a large variety of settings, the stochastic mechanism governing the incompleteness can be ignored without hampering inferences about the measurement process. While ignorability only requires the relatively general missing at random assumption for likelihood and Bayesian inferences, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Statistics in medicine
دوره 29 14 شماره
صفحات -
تاریخ انتشار 2010